

SaltGae algae to treat saline wastewater

A novel Energy Recovery Device/RO test rig targeted to treat & recoup low industrial wastewater flows.

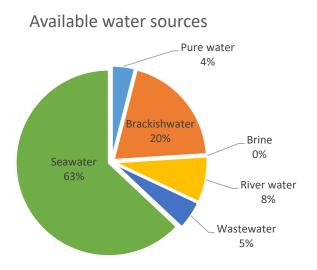
IDIW Conferencee th– 8th Febuary 2017 eeuwarden, The Netherlands I<u>ícheál Cairns</u>, Lorna Fitzsimons, Yan Delauré VP3 - Dublin City University

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement no 689785

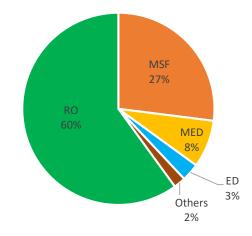
saltgae.eu CO

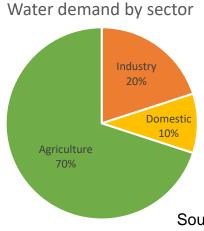
DCU

- Background and Rationale
- Energy Recovery Devices
- Project Overview SaltGae
- SaltGae WP3
- Test Rig Design P&ID
- Innovative Enery Recovery Device
- Membrane Selection Initial Results
- Test Rig Design Solidworks Model
- Expected Results
- Future Work
- Questions


saltgae.eu

CO


Background and Rationale


Water sources, treatment technologies and demand:

Desalination technology usage: Installed capacity

Source: Adapted from <u>www.desaldata.com</u>

Source: Adapted from www.worldometers.info/water/

MED: Multi Effect Distillation MSF: Multi Stage Distillation

Background and Rationale

Water purification technology	Energy (kWh/m³)	Reference
Brackish water RO (core process)	1	(Semiat 2008)
Seawater RO with Energy recovery (core process)	2.2 to 2.7	(Semiat 2008, Macedonio, Drioli 2010)
Seawater RO (all auxiliary requirements)	5 to 7	(Blank, Tusel et al. 2007, Macedonio, Drioli 2010)
MSF	16 to 20	(Darwish 2007, Mabrouk, Nafey et al. 2010)
MSF (all auxiliary requirements)	38.5 to 125	(Blank, Tusel et al. 2007)
MED	14	(Mabrouk, Nafey et al. 2010)
MED (all auxiliary requirements)	32 to 122.5	(Semiat 2008)
Ultra-Pure Water RO (all auxiliary requirements)	9.55 to 10.24	(Hu, Wu et al. 2008, SEMI 2005)

 In the 1970s: the specific energy consumption of seawater reverse osmosis (SWRO) ~ 20 kWh/m³ (MacHarg and Truby, 2004)

Energy Recovery Devices

- Energy recovery devices have been one of several factors leading to lower energy footprint reverse osmosis (RO)
- Energy recovery devices include Pelton/Francis turbines; various pressure exchangers including the Energy RecoveryTM PX pressure exchanger and Flowserve DWEERTM
- DWEERTM operating flows: 160 m³/h 350 m³/h
- Energy Recovery[™] PX pressure exchanger operating flows: PX-30 reported as 4.5 to 6.81 m³/h
- Is there a device available for relatively low flow rates and is this device economical?

Source: Energy Recovery[™] Product catalogues

saltgae.euDWEER™: Dual Work ExchangerCOEnergy Recovery

Sources: <u>http://www.energyrecovery.com/water/px-pressure-exchanger/</u> <u>https://www.flowserve.com/en/products/pumps/specialty-products/energy-</u> recovery-device/energy-recovery-device-dweer)

Saltgae.eu

- H2020-WATER-1b-2015
- €9.8 million in funding
- 36 months duration
- Holistic and resource efficient approach to industrial wastewater treatment for EC Food & Beverage Industry
- Focused on industries required to treat saline wastewaters e.g. canned fish, meat processing, pickled vegetables, leather tanneries and aquaculture

Source: environmentalleverage.com

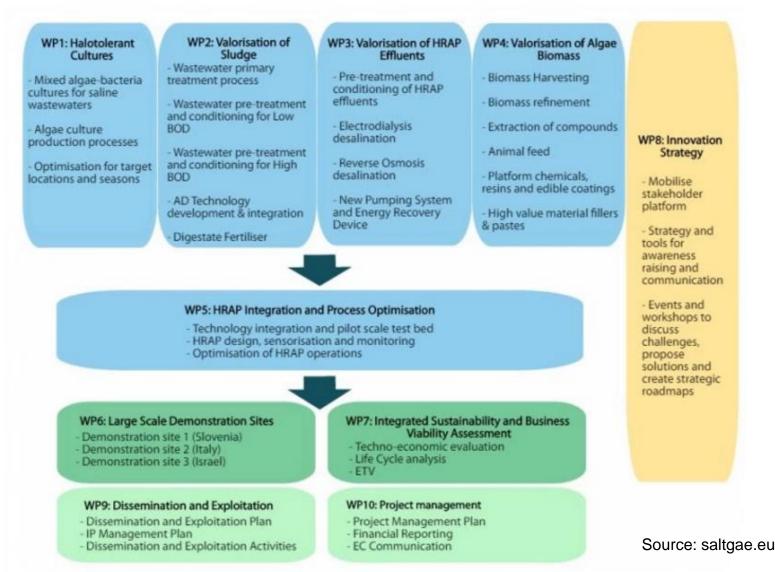
Wastewater from the Food & Beverage industry

 Wastewaters with high concentrations of biodegradable organic matter, suspended solids, nutrients (mainly nitrogen and phosphorus) and salt (concentrations up to 15%)

saltgae.eu CO

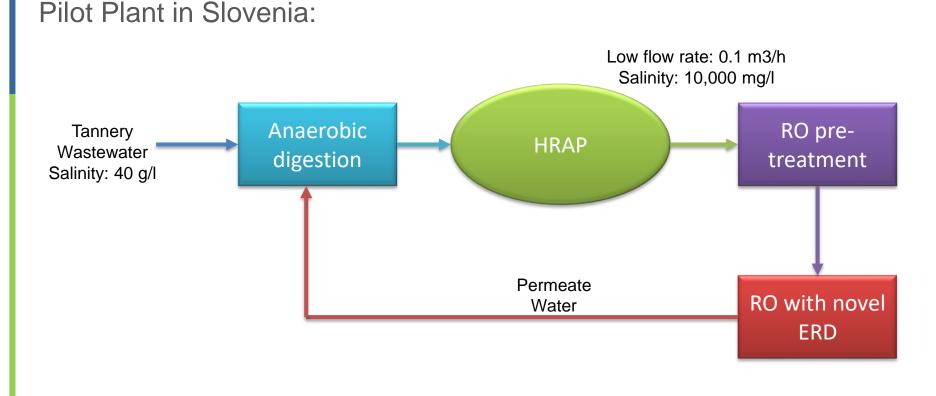
Sources: http://www.environmentalleverage.com/industry/food%20and%20beverage/Food %20Beverage.html

Objectives of SaltGae:


- A techno-economically viable solution for the treatment of saline wastewaters
- Specifically considers three different production processes across three pilot plants:
 - Tannery Plant located in Slovenia (~40 g/l salinity)
 - Whey Plant located in Italy (~10 g/l salinity)
 - Aquaculture Plant located in Israel (~3 g/l salinity)
- SaltGae suite of technologies:
 - High Rate Algal Ponds (HRAPs) hosting synergistic mixtures of halotolerant bacteria and algae
 - Anaerobic digestion
 - Energy efficient desalination to treat HRAP effluents for reuse/recycling
- Valorisation of perceived waste products

SaltGae – WP3

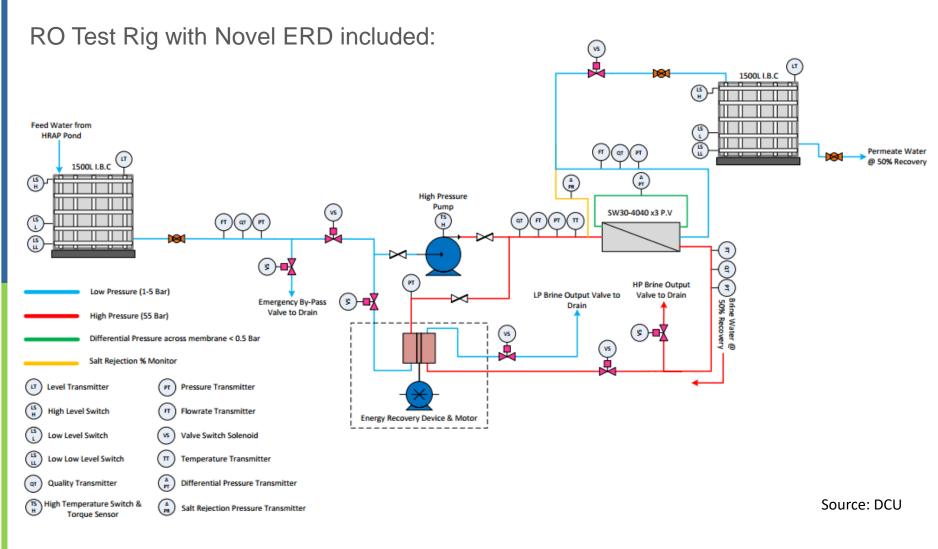
saltgae.eu CO


H2020-Water-1b-2015

SaltGae – WP3

WP3: Valorisation of HRAP effluents

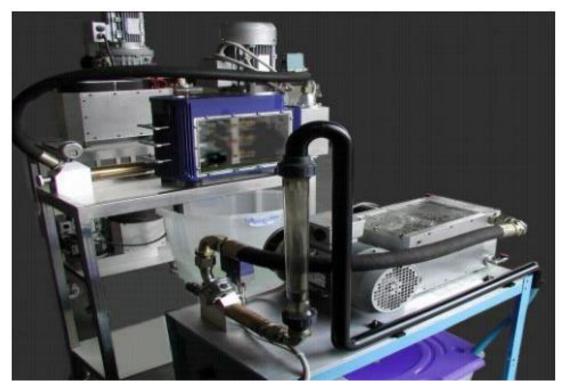
- Pre-treatment and conditioning of HRAP effluents
- Reverse osmosis incorporating novel energy recovery device
- Electrodialysis



saltgae.eu

CO

Test Rig Design – P&ID Diagram


H2020-Water-1b-2015

saltgae.eu CO

Innovative Energy Recovery Device

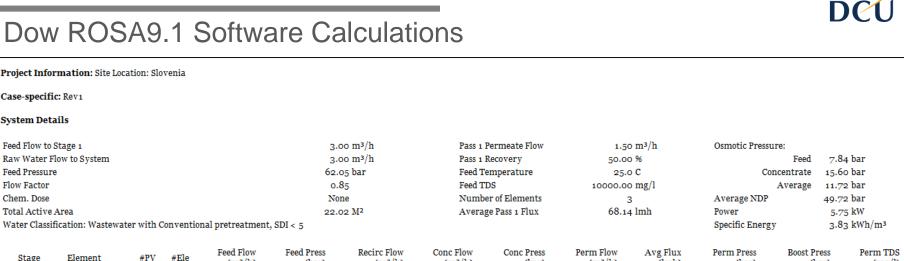
One of the various prototypes of the pump/ERD

Source: saltgae.eu

- Initial test rig for the pump/energy recovery device
- Reciprocating, positive displacement pump/ERD
- This innovative ERD is IP Protected and therefore cannot be discussed in detail as of yet

saltgae.eu CO

Membrane Selection – Initial Results


Dow ROSA9.1 Software Calculations

 (m^3/h)

3.00

(bar)

61.71

Typical sa	ample of	results	made in	Dow ROSA9.1	

(m³/h)

1.50

(bar)

61.13

(m³/h)

1.50

(lmh)

68.14

(bar)

0.00

(m³/h)

0.00

Source: Dow Rosa9.1

(mg/l)

31.98

(bar)

0.00

- In order for the new ERD to function optimally, we require sufficient brine line pressure and flow
- This involves a slight trade off between water quality and energy consumption

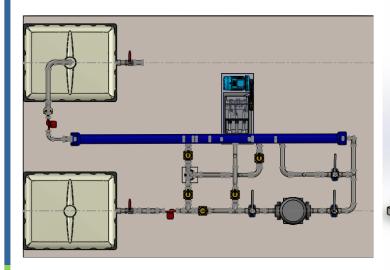
What does this mean?

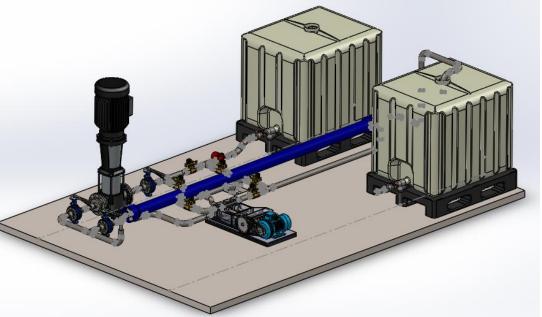
1

3

- Higher Energy Recovery from the new ERD for lower flow rates
- Minimum mixing between brine and feed water
- Innovative design minimises flow fluctuations

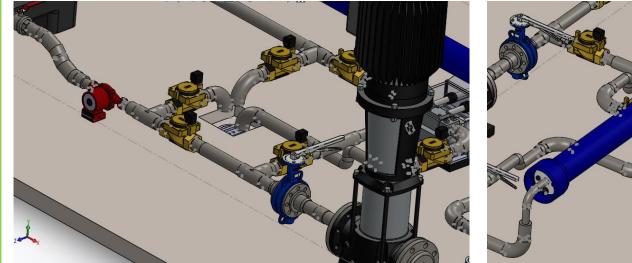
H2020-Water-1b-2015

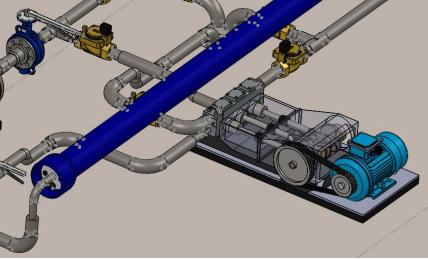

Stage


1

SW30-4040

Test Rig Design – Solidworks Model

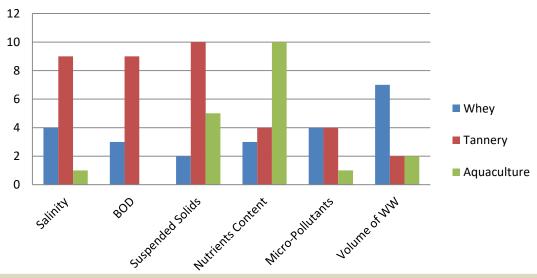




Source: DCU

saltgae.eu

CO



H2020-Water-1b-2015

Optimising Energy Efficency

- Water treatment requirements, and the associated energy requirements to treat water/wastewater to designated standards, vary according to application.
- Typically, the energy requirements are a function of scale, technology, incoming water quality and product water quality requirements.
- The proposed SaltGae design results in a more tailored, combined RO/ERD solution for each given wastewater site which yields more suitable water qualities (due to RO) whilst maintaining a low overall energy consumption (due to ERDs).

Water characteristics at each pilot plant

Future Work

- Manufacture the RO test rig
- Automation & calibration of RO test rig & respective instrumentation
- Programming of RO test rig's programmable logic control (PLC)
- Test programme for high pressure pump, ERD, incorporating RO
- Optimisation of overall system control strategy
- Once tested and optimised, deploy the system in Israel and Slovenia
- Design system suitable for telemetry for remote monitoring

Questions

Any Questions?

saltgae.eu CO

H2020-Water-1b-2015

Thank you for listening!

Mícheál Cairns Postgraduate Research School of Mechanical & Manufacturing Engineering Dublin City University Glasnevin Dublin 9 Ireland www.dcu.ie

Archimede Ricerche Srl

_	=	1	
		ЪĒ	
			_

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement no 689785

