

The Microalgae hub project: how to use microalgae for agro-industrial wastewater bioremediation and valorisation of the algal biomass

E. Ficara, M. Bellucci,

F. Marazzi, V. Mezzanotte

K. Parati

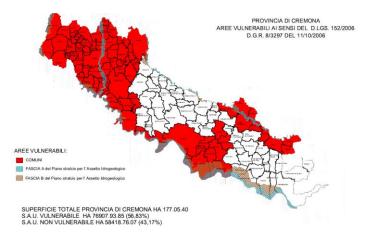
MICROALGAE AS A SUSTAINABLE ALTERNATIVE FOR WASTEWATER TREATMENT

SALTGAE FINAL EVENT 25 September 2019 Venue: Grand Hotel Union - Miklosiceva 1 (1000 Ljubljana)

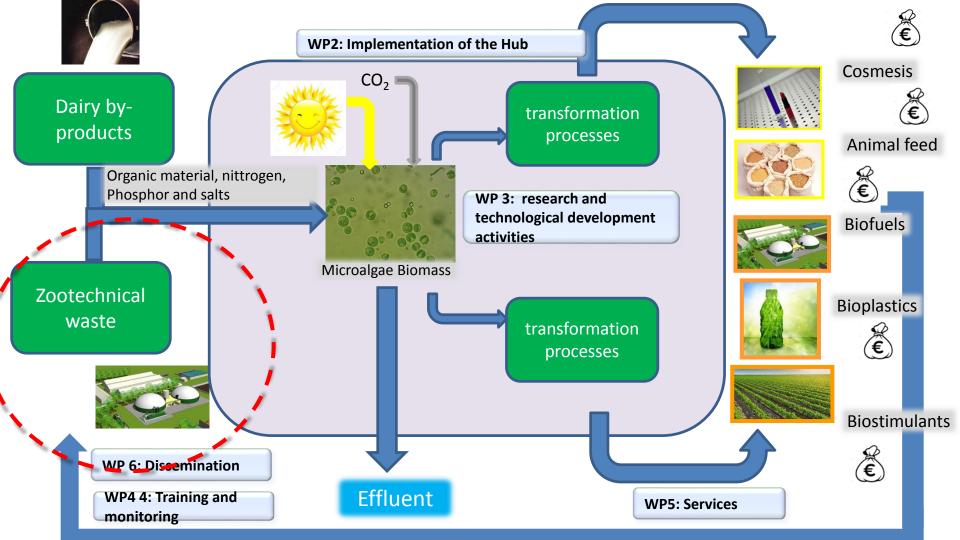
The project – The microalgae hub

OMRARDI/

MICROALGHE The motivation/context

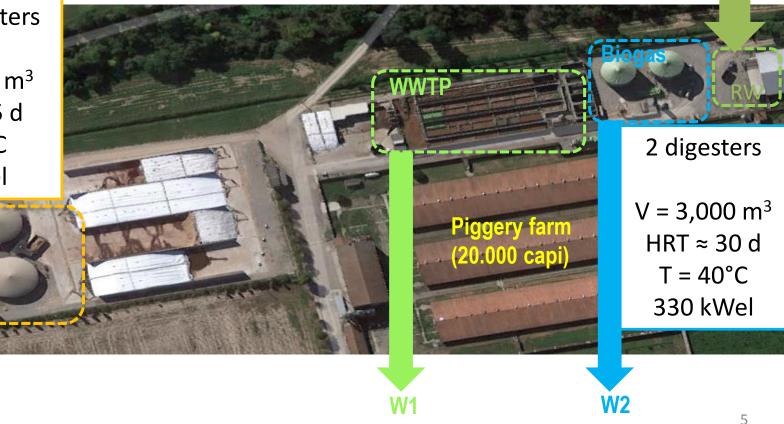

Cremona Province

- Agriculture: 15.5% of companies belong to the agricultural sector, breeding 887,000 pigs, 288,000 cows, e 1,800 buffalos → intensive breeding
- Anaerobic digestion: prompted by national incentive → more than 140 biogas plants



Nitrate directive (676/91/CE)

56% of the Cremona province is classified as vulnerable to nitrate


The case study

2 digesters + 2 post digesters

V = 9,000 m³ HRT ≈ 55 d T= 42°C 1 MWel

W3

The case study

Ideal

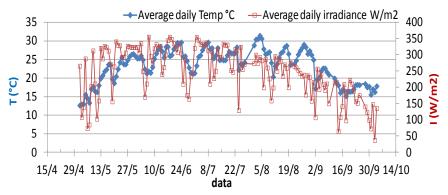
- Low optical density/turbidity_
- Physiological pH
- Non –inhibiting N-NH₄
- N:P=10-30

POLO DELLE

MICROALGHE

	W1		W2		W3	
	piggery		digestate		digestate	
	TQ	SL	TQ	SL	TQ	SL
TS g/L	5	2	- 77			
VS (g/l)						
рН						2
N-NH ₄ (mg/l)						50
P (mg/l)	۷.	13	142	26	233	271
Turbidity (FAU)	148	191	4 280	70	3 660	4 460
COD sol (mg/l)	1 390	1 070	4 220	1 920	4 240	5 070
COD tot (mg/l)	4 550	1 000	72 440	3 400	5 560	50 000

Pilot scale tests


Raceway

POLO DELLE

MICROALGHE

A = 3.8 m² (V =0.9 m³),

- paddlewheel
- pH control by bubbling CO₂
- CO₂ sump
- feeding pump

Experimental campaigns:

- **2016:** diluted digestate $(1:5 \rightarrow 1:3)$
- 2017: piggery wastewater
- 2018: undiluted digestate

Assessment of:

- N and P forms
- Organic contamination (COD)
- Algae growth parameters (counts, TSS, OD680, turbidity)

MICROALGHE Pilot scale tests - 2016: diluted digestate

- Microalgae could grow in the liquid fraction of agro-digestate and under sub-optimal climatic conditions for 200 d
- Average **productivity:** 8.2 g TSS m⁻² d⁻¹
- **N apportioning**: 7±3% N was assimilated; 61 ± 24% was nitrified

	Contents lists available at ScienceDirect	algal	
2,3	Algal Research		
SEVIER	journal homepage: www.elsevier.com/locate/algal		

Algal Research 24 (2017) 19-28

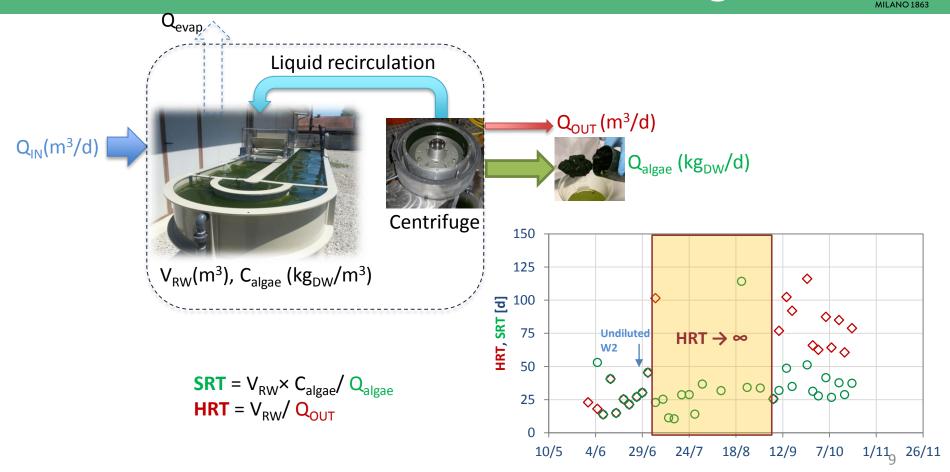
A novel option for reducing the optical density of liquid digestate to achieve a more productive microalgal culturing

Marazzi F.^a, Sambusiti C.^b, Monlau F.^{b,c}, Cecere S.E.^d, Scaglione D.^d, Barakat A.^b, Mezzanotte V.^a, Ficara E.^{d,*}

Bioresource Technology 274 (2019) 232-243

	Contents lists available at ScienceDirect	BIORESOURCE TECHNOLOGY
2 CL	Bioresource Technology	
LSEVIER	journal homepage: www.elsevier.com/locate/biortech	- burner

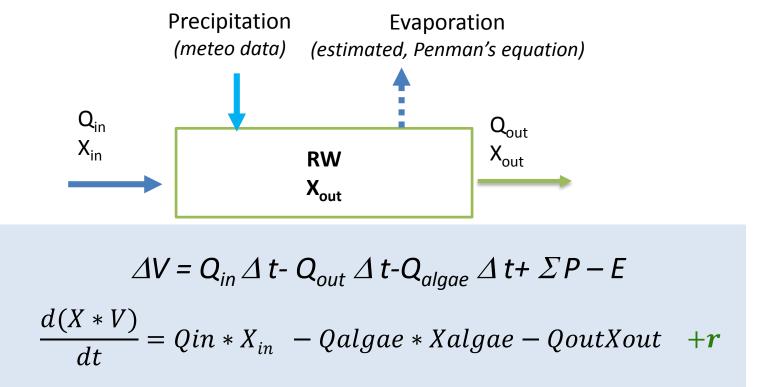
Digestate treatment with algae-bacteria consortia: A field pilot-scale experimentation in a sub-optimal climate area

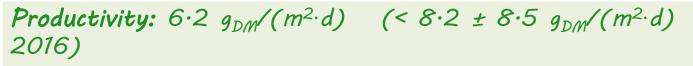


A. Pizzera^a, D. Scaglione^a, M. Bellucci^a, F. Marazzi^b, V. Mezzanotte^b, K. Parati^c, E. Ficara^{a,*}

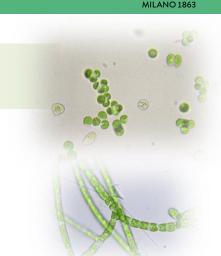
ΛΙΙ ΔΝΟ 186

CrossMark


Pilot scale tests - 2018: undiluted digestate


Pilot scale tests - 2018: undiluted digestate

Raceway mass balances:


Pilot scale tests - 2018: undiluted digestate

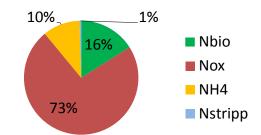
Removal efficiencies:

- NH4⁺-N: 95 ± 12 [%]
- N: 52 ± 13 [%]
- PO4³⁻-P: 80 ± 21 [%]
- CODs: 45 ± 35 [%]

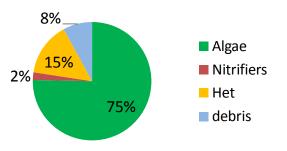
 $N-NH_4^+: 0 \pm 1 \% \rightarrow high removal$ $N \ stripped: \ 35 \pm 7 \% \rightarrow poor \ pH$ $control \rightarrow stripping \ (or \ denitrification)$ $N-NO_2^-: \ 8 \pm 4 \%$ $N-NO_3^-: \ 44 \pm 12 \% \rightarrow nitrification$ $N-biomass: \ 13 \pm 1 \%$

Pilot scale tests - 2017: piggery WW

	TSS	N-NH ₄	N-NO ₃	OD @680	sCOD	P-PO ₄	Cond.
	(g/L)	(mg/L)	(mg/L)	(-)	(mg/L)	(mg/L)	(mS/cm)
Mean	0.2	200	3.6	0.15	658	20	3.5
Standard dev.	0.28	60	3.6	0.08	314	14	0.3


Stable growth but variable composition of algal community

Average productivity: = 10 gDM/m²/d \rightarrow 9 months = 27 tDM/ha/year


Pilot scale tests - 2017: piggery WW

N apportioning

Biomass apportioning

- Ammonium removal Mean: 90%
- P removal: More variable Mean: 46%
- sCOD removal: Mean: 67% (O₂ from algae)

Conclusions/Perspectives

PROs

- Reduced N load to the fields (→ reduced arable land demand for N disposal)
- Lower energy request for aeration
- Production of valuable algal biomass (CO₂ capture, organic C and nutrients to be returned to soils)

CONs

- Large areal request for algae treatment
- Overall efficiency largely dependent on climatic conditions (*may imply discontinuous operation*)
- Long term stability still to be proven

- \rightarrow Integrated schemes are to be tested for final applicability assessment
- \rightarrow Biomass valorization

POLO DELLE

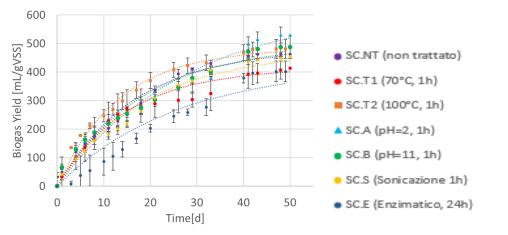
CROALGHE

→ Optimization of culturing (respirometry+modelling)

Valorization

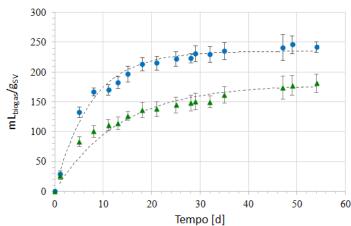
- Fertilisers,
- biostimulants
- Biofuels
- Feed in aquacultures
- Biomaterials

Valorization – CH4



Biogas

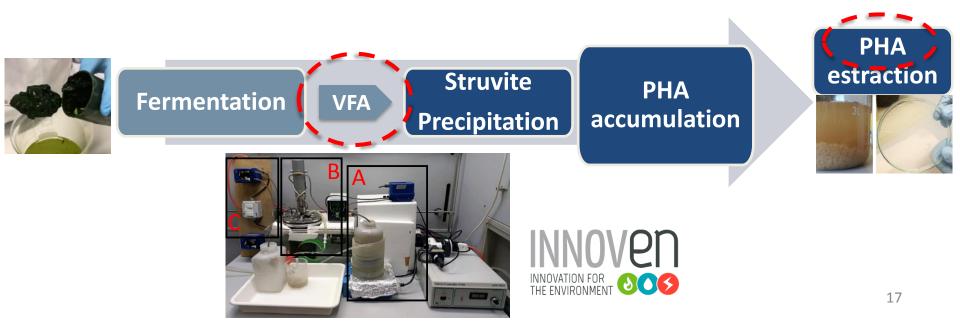
POLO DELLE


MICROALGHE

Simple/straightforward Reduces the overall N removal benefit Low methane yield (100-200 Nm³_CH4/ton_DM)

- Pretreatments are required (cost/benefit balance)
- Co-digestion

16


Valorization - PHA

Bioplastics/VFAs

More complex Allows for N, P recovery Low yield (0,08 -0,2 g_PHA/g_DM)

- Optimization of process parameters
- Co-fermentation

Thanks to

All of you for listening