

INTRODUCTION TO ALGAL AND OTHER NUTRIENT REMOVAL TECHNOLOGIES

Pedro A. García Encina (pedro@iq.uva.es)
Raúl Muñoz Torre (mutora@iq.uva.es)

Institute of Sustainable Processes University of Valladolid (Spain)

+ Very inefficient process for low-medium size population

SaltGae MICROALGAE-BASED WASTEWATER TREATMENT

SaltGae MICROALGAE-BASED WASTEWATER TREATMENT

(Muñoz and Guieysse 2006)

MICROALGAE-BASED WASTEWATER TREATMENT

SYMBIOSIS MICROALGAE - BACTERIA

SaltGae MICROALGAE-BASED WASTEWATER TREATMENT

Phenanthrene

Azo Dyes

altGae MICROALGAE-BASED WASTEWATER TREATMENT

Hydraulic Retention Time = 3-4 days

- ✓ Organic Matter Removals ≈ 70-80 %
- ✓ Total Nitrogen Removals ≈ 60-70 %
- ✓ NH_4^+ Removals ≈ 98-100 %
- ✓ PO_4^{3-} Removals ≈ 40-60 %

Chemical Engineering Journal

Chemical Engineering Journal

journal homepage: www.elsevier.com/locate/cej

Influence of pH and CO₂ source on the performance of microalgae-based secondary domestic wastewater treatment in outdoors pilot raceways

Esther Posadas a,b,*, María del Mar Morales a,1, Cintia Gomez a,1, F. Gabriel Acién a,1, Raúl Muñoz b,2

MICROALGAE-BASED WASTEWATER TREATMENT

SaltGae MICROALGAE-BASED WASTEWATER TREATMENT

> 100 years of R&D

VS < 10 years of R&D

altGae MICROALGAE-BASED WASTEWATER TREATMENT

Limitations and on-going research to enhance nutrient recovery.....

- ✓ Limited process performance in wastewaters with low C/N ratio
- ✓ Poor biomass sedimentation → operation costs ↑↑
- ✓ Limited biomass valorization → economic balance €€ ↓↓
- ✓ Limited experience at large scale → credibility ↓↓
- ✓ N_2 O emissions?? → Environmental Sustainability $\downarrow \downarrow$??
- ✓ Emerging Pollutants Removal?? → Biomass utilization??

Biomass settling and recycling allows for

✓ Process operation at 2000-3000 mg TSS/L and at low HRT

✓ High biomass sedimentation rates
(1.5 – 2 m/h)

(Alcántara et al. 2015)

Low effluent TSS concentrations (26±12 mg TSS/L)

Recovery as Algal Biomass

Impacts per hectare

Demo scale microalgae-based WWT

WATER LINE

SRM1: Nitrates concentrate
AP1: Organic fertiliser based on
nitrates

SLUDGE LINE

SRM2: Hydrolysed sludge AP2: Biostimulant based on Bacillus sp. biomass

ALGAE LINE

SRM3: Algal biomass AP3: Biostimulant based on algal biomass

ENERGY RECOVERY MODULE Biogas + CO₂ released

Camporosso Demo

Saline

waste

water

Energy (biogas)

Sludge

valorisation

Pre-treatment

COD removal

Assessing Environmental Sustainability:

Quantifying N₂O emissions

Emerging pollutant removal in algal-bacterial photobioreactors

Treatment of domestic WW doped with 100 µg l⁻¹
 of tetracycline at HRTs of 7 and 4 days.

Photolysis as the main mechanisms of removal

biomass valorization

Take home messages

□ CO ₂ supplementation from biogas represents a cost-effective strategy to boost nutrient recovery during microalgae-based WWT while producing biomethane
☐ Biomass recycling promotes the enrichment of biomass with good settling capacity
☐ Innovative operational strategies decoupling the HRT from the SRT allows controlling biomass productivities and nutrient recovery
□ Nutrient recovery using microalgae has been validated at large scale
□ Valorization of residual biomass has been validated at large scale
□ N₂O emissions in algal-bacterial systems are 100 times lower than in Activated Sludge processes
☐ Effective emerging pollutant removal by photolysis is not expected to jeopardize

Take home messages

INTRODUCTION TO ALGAL AND OTHER NUTRIENT REMOVAL TECHNOLOGIES

Thank you for your Attention

Contact: Pedro A. García <u>pedro@iq.uva.es</u>

Raúl Muñoz mutora@iq.uva.es

http://www.ips.uva.es

http://gastreatment-microalgaeresearchgroup.blogspot.com.es/

Follow us in **Twitter**: @VOC_Odours

Visit us in: Facebook: facebook.com/VocOdoursGroup

