MICROALGAE AS A SUSTAINABLE ALTERNATIVE FOR WASTEWATER TREATMENT

FINAL EVENT

Ljbliana (Slovenia), September 25th, 2019 Project coordinator:

Jose Ignacio Lozano

Saltgae Project Overview

A Horizon 2020 project:

"Demonstration project to prove the techno-economic feasibility of using algae to treat saline wastewater from the food industry."

- Action programme
- Started
- Ends
- Estimated Project Cost
- Requested EU Contribution
- Project Coordinator
- Project Officer
- Number of partners

Water 1b-2015 IA

01-Jun-2016

30-September-2019

€9 800 000

€8 300 000

José Ignacio Lozano (Funditec)

Erik Pentimalli (EASME/B/02)

21

Project Motivation

- For any industry generating large amounts of wastewater, management of their residues to comply with the EU directives involves costs, which can be very high.
- This issue is specially critical for many industrial sectors that **generate saline** wastewater, such as *food processing*, *leather* industries, land-based *aquaculture*.
- This kind of waste, with high concentrations of biodegradable organic matter, suspended solids, nutrients (nitrogen and phosphorus) and salt (concentrations up to 15%) is extremely difficult and expensive to treat by conventional means (e.g. anaerobic digestion treatment is inhibited).
- ➤ This limitation can make the cost unaffordable for SMEs, who can decide not to comply with EU directives and discharge without adequate treatment, causing severe damage to the environment.

Project Description

- > Saltgae Project is an innovative modular technology for the efficient treatment of saline wastewaters with organic load, which:
 - ✓ Complies with European Directives
 - ✓ Recycles water for non-potable applications and valorising the contaminants as a valuable resource.
 - √ Ease of operation
 - ✓ Significant cost reductions

500 m² Algae pond

AD pilot reactor

Project Objectives

1)Technical

- To develop a *techno-economically viable solution for the treatment of saline wastewaters* from the F&B industry, and *its demonstration at large scale*, with:
 - Efficiency: BOD, N and P removal (> 90%) and algae biomass growth (> 15 g/m²/day);
 - **Robustness:** Able to deal with *different salinity levels* (2 g/L to 50 g/L), wastewater compositions and cultivation conditions;
 - Cost reduction: > 40% respect to current alternatives for saline wastewater with COD
 - **Profitability**: Able to valorize the algae biomass, transforming a waste into revenue, with an increment > 15% profit margin earned per tonne of algae biomass produced.

2) Social-environmental

- > To develop an innovative platform
 - for the mobilization and networking of stakeholders from all the different www sectors
 - for the *dissemination of results* with the aim of promoting paradigm shift in perception from 'wastewater treatment' to 'resource valorisation'.

Saltgae Conceptual Diagram

Consortium

www.saltgae.eu

Consortium

Project structure vs Partners

Technology modules

Science & Technology

Commercial

INNOVATION RESULT: Efficient Sludge valorisation

INNOVATION RESULT: Effluent valorisation

- Ultrafiltration:
- Best pretreatment for 99% removal of mass foulants
- Good method for biomass harvesting Up to 250g/l
- Electrodialysis vs RO:
- ED: achieve low conductivities (1-2 mS/cm) with sufficient yields to consider a viable industrial installation (>50%).
- RO: good performance without severe fouling!
- High pressure RO pump and energy recovery device
- Self-priming pump design that avoiding the need for a booster pump to pressurize the feed flow.
- Efficiency around 90%

INNOVATION RESULT: Algal Ponds

SALTGAE solution (algal-bacterial ecosystem)

- When we add algae to bacterial system:
- \checkmark they can consume the CO₂ produced by bacteria and convert it into own biomass using solar light (photosynthesis). A side product of this process is oxygen, which can be used by bacteria to reduce BOD: replaces the need for aeration.
- ✓ Partially embodies the energy contained in the wastewater into the biomass which can then be used for other purposes or to recover energy into biogas.
- ✓ As result, the treatment is much cheaper due to the reduced costs of aeration, CO₂ is recycled rather than contributing to the climate change, and biomass can be further utilized (and sold).

INNOVATION RESULT:

Algal Ponds

A. Microbiome of tannery

WW

B. Microbiome of D. salina in tannery WW

C. Microbiome of *Spirulina* in tannery WW

Algal-bacterial ecosystem

Krona pie-charts of microbiome associated with:

- A. Tannery WW without algae
- B. D. salina grown in tannery 10% v/v
- C. Spirulina grown in tannery 10% v/v

INNOVATION RESULT:

Algal Ponds

Smart Desing and Operation

- Efficiency: Different agitation degrees and pond shapes
- Saving energy: Different agitation devices (paddle Wheel)
- Economy: Different materials and construction approach to reduce cost

INNOVATION RESULT: Biomass Valorisation

Resins, adhesives

Bio-composites

Biomass

Animal Feed

Demo Sites

Ljubljana Demo

Arava Demo

Arava uses water from aquaculture (fish farming) by algae

Technologies

- ✓ Smart metering and DAF system
- HRAP algal pond: 3 x 50 m3 HRAPs
- RO system
- Spirulina, Tetraselmis, Nannochloropsis

Demonstrator treatment capacity

- The fish system: three 10 m3 L tanks with about 700 kg of total fish biomass (barramundi fish).
- Salinity levels: 2.5 g/L
- Organic matter: COD 10,000 mg O2/L, 5 kg/d of biomass
- Wastewater contains around 200 ppt of nitrate and 10 ppt phosphate.

Contact Dr. Yair Kohn yairk@arava.co.il en.agri.arava.co.il

Camporroso Demo

Archimede treat water from the dairy industry.

Demonstrator treatment capacity

- 20 m3/d
- Salinity levels: 10–30 g/L
- Organic matter: COD 5,000 mg O2/L,
- TKN 100 ppm
- 20 kg/d of biomass

Technologies

- ✓ Dairy wastewater pretreatment
- √ 3000 m2 algal phyto depuration system
- ✓ Biomass harvesting drying and storage
- ✓ Microfiltration and centrifugation
- ✓ Spirulina, Tetraselmis and Nannochloropsis

Silvio Mangini mangini @archimedericerche.com

Innovative pond design with temperature control

Thanks for your Attention

Jose Ignacio Lozano, Ph.D.

jilozano@funditec.es

Mobile: +34 662 168 050