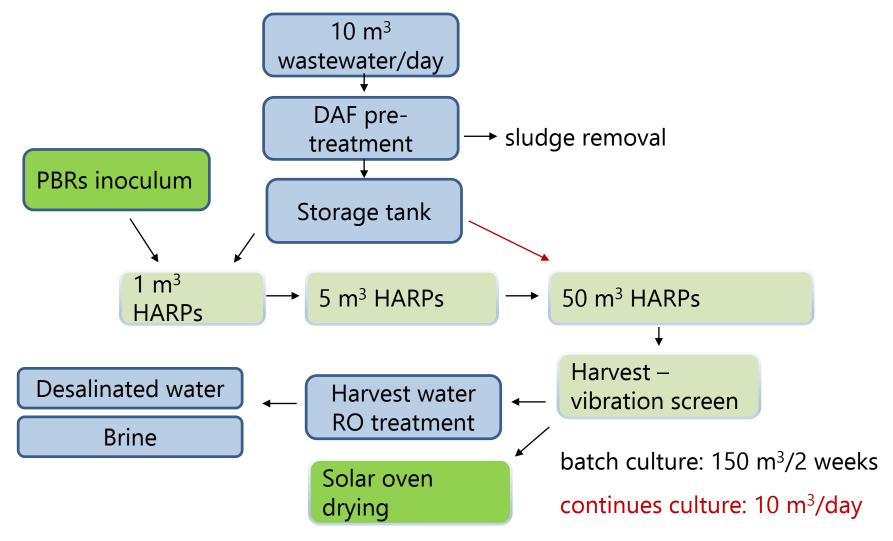


Location: Agricultural R&D institute in the Arava, Southern Israel within an arid desert area

Objective: establishment of large scale HRAP treating low BOD content, low salinity aquaculture wastewater while producing algae biomass

System components:

	Capacity	Biomass production	Species	Operation mode
Indoor aquaculture	30 m ³	2 ton/year	Lates calcarifer (Barramundi)	continuous
Indoor algae PBRs	0.5 m ³	Algae inoculum	Spirulina	continuous
Outdoor algae HRAPs	163 m ³	300 kg DW/month	Spirulina	batch/continuous


SaltGae technology employed:

- Wastewater pre-treatment DAF BiboAqua
- System monitoring Sensors Oxidine
- Harvest water recovery RO BiboAqua

SaltGae partners cooperation: PTP, Extractis, RISE, Archimede, Algen/KOTO

Full system continuous operation since June 2019 on wastewater

Regular water input for: PBRs, evaporation compensation (4%), wash at harvest (5 %)

Algae cultivation

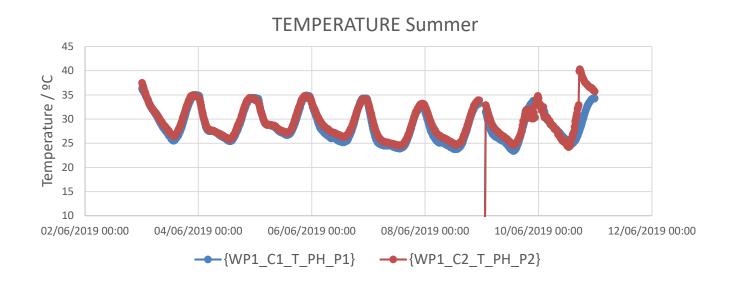
	Batch culture	Continuous culture
Wastewater treatment	10 m ³ /day	10 m ³ /day
Algae production	150 kg DW/2 weeks	10 kg DW/day
Energy consumption (RISE)		20 -30 % lower
Fresh water consumption (RISE)		60 % higher

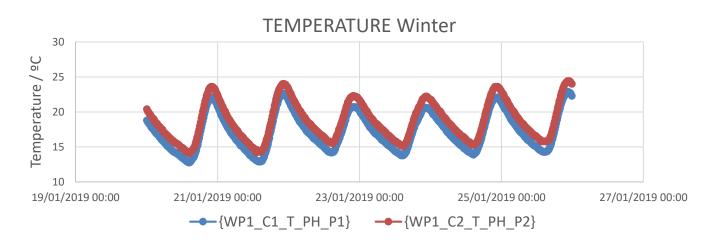
H2020-Water-1b-2015

Monitoring of algae system

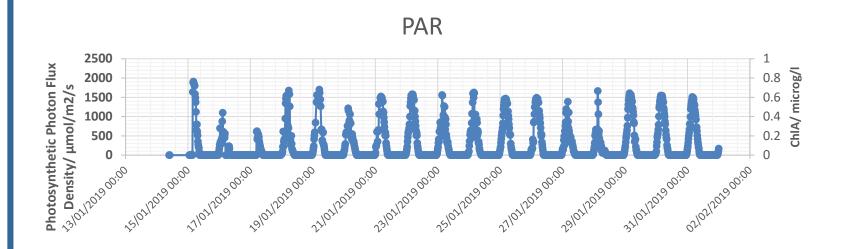
Lab monitoring

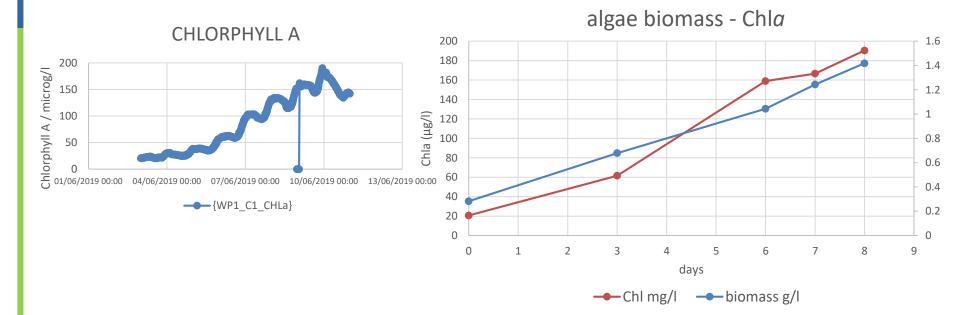
- Regular (every 2-3 days) in house
- ✓ pH, conductivity, temperature
- ✓ Phosphate, nitrate, ammonium
- ✓ Algae biomass
- ✓ Microscopy (weekly)


Automatized monitoring (sensors – Oxidine)

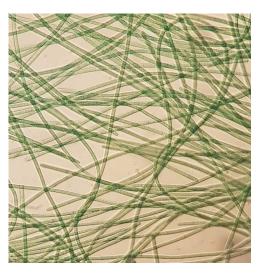

- pH, conductivity, **temperature, Chla, light (PAR),** NO₃
- easy and quick display, range limitations
- maintenance crucial (cleaning, calibration), risk of false reading

Conclusion: Sensors do not entirely replace manual monitoring measurements

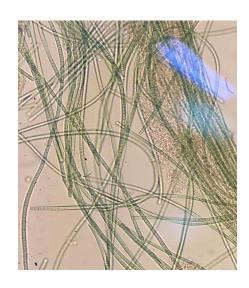



Monitoring of algae system - automation

Monitoring of algae system - automation

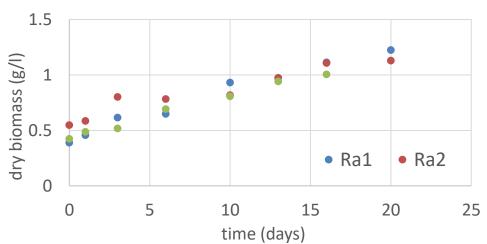

Monitoring of algae system - lab

	рН	Salinity dS/m	NO ₃ mg/l	PO ₄ mg/l	BOD mg/l	COD mg/l	TOC mg/l	TSS mg/l
Waste water	7.4	2.4	150-200	10-20	20-50	80-100	15-20	15- 30
Pre-treated water (DAF)	7.2				5-15	20-40	<10	5
Harvest water	9.0	6-8	10-20	0-10				
RO desalinated water	9.0	0.3	8	0	3	25	6	5
RO Brine	8.5	11	30	20	50	110	25	30
Reduction		95 %	90 -95%	100 %	60-90 %	60-80%	50-70%	80%

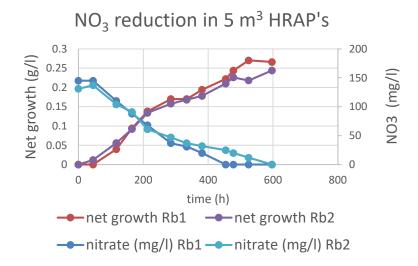

H2020-Water-1b-2015

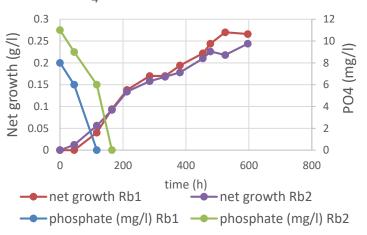
Monitoring of algae system - lab

Microscopy observation of cultures

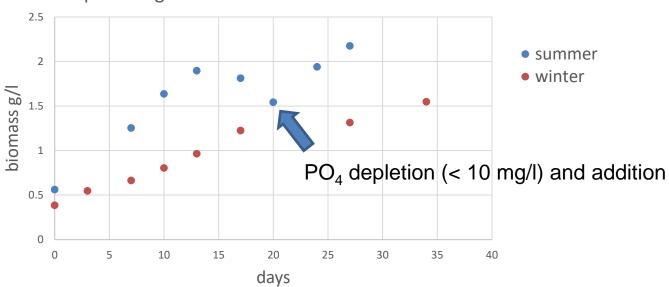

- Some contamination of other microalgae species and microorganisms is visible
- Naturally, bacteria, possible other cyanobacteria occur, difficult to identify with microscopy
- PTP genetic identification of bacterial and microalgae species within Spirulina cultures in HRAPs and in wastewater

Monitoring of algae system - lab


Biomass growth in HRAP


Spirulina growth in 1 m³ HRAP

Reduction of NO₃ and PO₄



PO₄ reduction in 5 m³ HRAP's

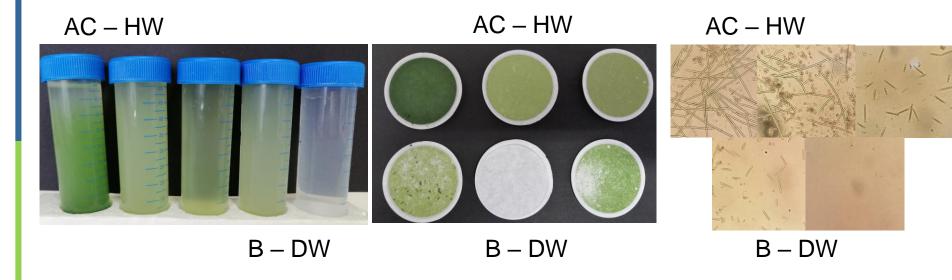
Algae biomass

- Maximum biomass > 1 g/l all year around
- Growth rate reduced in winter vs. summer (10-12 vs. 5-6 days)
- Long time culture in continues growth mode of up to 3-4 month
- Evaporation about 4%, compensated with regular water/wastewater

Harvest

Vibration sieve reduces 90-95% water

• 5-10% volume of harvest water used for washing algae biomass and reduces salt content in biomass



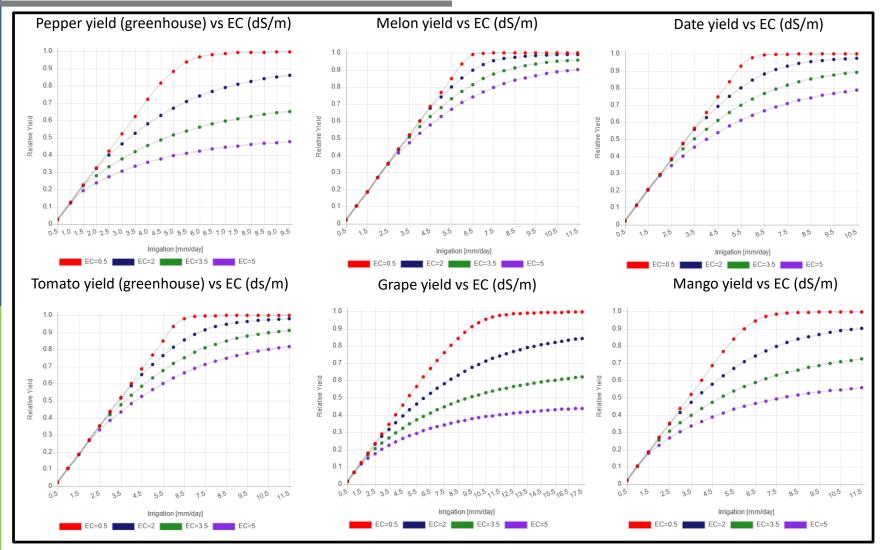
• Solar oven drying – economical solution, no decrease in dried biomass quality

Extractis analysis			
dried biomass	dry Matter (%)	minerals (%/DM)	proteins (%/DM)
50 °C oven 24 h	91.6	30.2	52.7
solar oven 24 -72 h	85.1	29.8	54.6

Harvest - Water recovery RO

- Harvest water contains shorter Spirulina filaments (up to 40%)
 - vibration sieve vs. UF/centrifugation
- Pre-filtration prior RO necessary (20 μm)

- Flow set to 2 m³/h, 50:50 desalinated water:brine
- Outflow water EC 0.3 dS/m, high pH (9.0)
- Brine contains Spirulina fragments (< 10%)


RO outflow applications

Desalinated water

- Agricultural area
- irrigation water up to EC of 4.5 dS/m
- Reduced crop growth and yield
- Using desalinated water would
- ✓ Increase crop yield
- ✓ Allow higher crop diversity
- ✓ Reduce in water consumption
- high pH causes changes in soil chemistry and would require to adapt fertigation (for iron and phosphate)

Desalinated water applications

Relative yield of 6 different crops grown in the Arava under different quantities and qualities (EC) of irrigation water. (Shani et al., 2007, source: https://app.agri.gov.il/AnswerApp)

RO outflow applications

Brine

- recirculation into algae ponds
- ✓ Reduces salt input, saves water
- ✓ compensate for evaporation
- Solar drying salt production (low value)

Conclusion:

- desalinated water outflow from RO unit is of high value for crop irrigation
- Brine recirculation reduces salt input and water consumption

ARAVA demo site achievements

Objectives	Status
System establishment (PBR, HRAP, DAF, Harvest, RO)	+
Continuous rearing of the selected fish and algae species in the system	+
Demonstration of excess nutrient removal (water analyses)	+
Removal of sludge	+
Efficient production and harvesting of algal biomass >10 g/m²/day of algal biomass 5 kg/m³/month of fish	+
Demonstration of statistically significant increase of crop yield due to use of desalted water	+

European

saltgae.eu